![]() メモリ回路中の調整可能なパイプライン
专利摘要:
メモリ回路の性能(1002,1004,1006)および/または該メモリ回路の少なくともいくつかの動作点の電力消費(1052,1054,1056)を改善するメモリ回路(18,300,400,908,1208)を動作させる技術は、メモリの動作点に少なくとも部分的に基づいて、動作パイプライン段(401,403)の数を調整すること(1100)を含む。本発明の少なくとも1つの実施形態では、メモリ回路を動作させる方法は、メモリ回路により生成されたフィードバック信号(feed−back、flush_ok、flush_ok1、flush_ok2,flush_ok3、flush_ok4,cycle_flush_through_ok)に少なくとも部分的に基づいて、メモリ回路の動作モード(flush_mode、flush1、flush2,mem_flush_control_bits)を選択することを含む。かかる技術は、メモリ回路の選択された動作モードに基づく数のパイプライン段を使用して、メモリ回路を動作させること(,)を含む。本発明の少なくとも1つの実施形態では、かかる技術は、個々のパイプライン段(401)に関連するタイミングマージンを感知し(608,708)、感知されたタイミングマージンに基づいてフィードバック信号を生成することを含む。 公开号:JP2011513812A 申请号:JP2010547658 申请日:2009-01-16 公开日:2011-04-28 发明作者:ビー. グエン、フイ;チャン、シャヤン;シー. モイヤー、ウィリアム 申请人:フリースケール セミコンダクター インコーポレイテッド; IPC主号:G06F12-00
专利说明:
[0001] 本開示は、一般には記憶システムに関し、より詳細にはパイプライン型記憶システムに関する。] 背景技術 [0002] 一般に、メモリ回路は特定の動作点で特定の性能目標を満たすように設計される。性能目標は、ピーク性能動作点におけるメモリ回路の待ち時間および電力消費(例えばピーク制御クロック信号周波数および特定の電源電圧)により定義され得る。性能目標を達成するために、メモリ回路は、論理回路の間に挿入された状態要素(例えばラッチ回路、フリップフロップ、または他の適切な状態要素)によりパイプラインでアクセスされ得る。典型的には、パイプライン型メモリ回路の個々のパイプライン段(pipeline stage)は、性能目標に関連する動作点で、制御クロック信号の全期間を利用するように設計される。しかしながら、パイプライン型メモリ回路の各パイプライン段を通じた伝搬遅延(つまり各パイプライン段の入力から各パイプライン段の出力までの遅延)は、実際の動作条件では一定でない。伝搬遅延は、温度、電源電圧または他の運転条件の変化により変わり得る。] [0003] 本発明は、例示として示され、添付図面により制限されない。図中、同様な参照数値は同様の要素を示す。図中の要素は単純さと明確さを目的に示されており、必ずしも正しい縮尺で描かれていない。異なる図中の同じ参照記号の使用は、類似または同一の項目を示す。] 図面の簡単な説明 [0004] 本発明の少なくとも1つの実施形態と一致する例証的なデータ処理システムのブロック図。 例証的なパイプライン型メモリ回路のブロック図。 本発明の少なくとも1つの実施形態と一致する例証的なパイプライン型メモリ回路のブロック図。 本発明の少なくとも1つの実施形態と一致する例証的なパイプライン型メモリ回路部分のブロック図。 本発明の少なくとも1つの実施形態と一致するよう構成された図4のパイプライン型メモリ回路部分の波形を示すタイミング図。 メモリ回路フィードバック信号の生成のための例証的な技術を示すブロック図。 メモリ回路フィードバック信号の生成のための例証的な技術を示すブロック図。 本発明の少なくとも1つの実施形態と一致するよう構成された図4のパイプライン型メモリ回路部分の波形を示すタイミング図。 本発明の少なくとも1つの実施形態と一致する例証的な制御システムのブロック図。 本発明の少なくとも1つの実施形態と一致するメモリ構造の例証的な動作点を示す。 本発明の少なくとも1つの実施形態と一致する例証的な制御フローを示す状態図。 本発明の少なくとも1つの実施形態と一致する例証的な制御システムのブロック図。] 図4 実施例 [0005] 通常のパイプライン型メモリ回路では、パイプライン型メモリ回路の個々のパイプライン段は、パイプライン段に割り当てられた制御クロック信号の全体部分を利用することが可能であり、それは制御クロック信号の全期間であってもよい。メモリが目標動作点で動作している間、パイプラインはメモリ回路の性能を改善し得るが、他の動作点ではパイプラインはメモリ回路のメモリ性能を制限し得る。制御クロック信号周波数が減少されるにつれて通常のパイプライン型メモリ回路の待ち時間は単調に減少する一方で、タイミングマージンは個々のパイプライン段で増加する。本明細書で述べる場合、パイプライン段のタイミングマージンは、目標振動数で動作している時にパイプライン段に割り当てられるクロック信号の部分と、パイプライン段が入力の処理を完了して出力を生成するのに必要な時間との間の差である。パイプライン型メモリ回路が、性能目標に関連する動作点に対して構成された場合、メモリ回路は他の動作点(例えば電源電圧および/または制御クロック信号周波数がより低い)でよりも多くの電力を消費する。一般に、パイプライン型メモリ回路では、状態要素(例えばラッチ、フリップ−フロップ、または他の適切な状態要素)の数がメモリ回路のサイズの増加とともに指数関数的に増加し、それらの状態要素の電力消費は全メモリ電力消費のうちのかなりの部分を占める。] [0006] 従って、パイプライン型メモリ回路の性能と電力消費との関係は、電源電圧レベルおよび/または制御クロック信号周波数のスケーリングに比例して改善しない可能性がある。さらに、1つの応用(例えばバックエンドキャッシュアレイ)のための特定の目標動作条件(例えば特定の周波数および電源電圧レベル)を満たすメモリ回路設計は、信頼性要件(例えばエラー訂正コード動作または他のプラットフォーム機能特徴)を満たすために追加のパイプライン時間を要求する他の応用(例えば、より低い周波数で動作するマルチコアフロントエンド/プラットフォームキャッシュアレイ)のための使用を満たさない可能性がある。さらに、個々のパイプライン段に関連するタイミングマージンは、(例えば温度差、電源電圧レベル変化、動作周波数調整、または他の動作状況への変更により)動的に変化し、パイプライン型メモリ回路の性能および電力消費に有害な影響を及ぼし得る。従って、メモリ回路を動作させる新しい技術が望まれる。] [0007] メモリ回路の性能および/またはメモリ回路の少なくともいくつかの動作点に対する電力消費を改善するメモリ回路を動作させる技術は、メモリの動作点に少なくとも部分的に基づいて、動作パイプライン段の数を調整することを含む。本発明の少なくとも1つの実施形態では、メモリ回路を動作させる方法は、メモリ回路によって生成されたフィードバック信号に少なくとも部分的に基づいて、メモリ回路の動作モードを選択することを含む。方法は、メモリ回路の選択された動作モードに基づく数のパイプライン段を使用して、メモリ回路を動作させることを含む。本発明の少なくとも1つの実施形態では、技術は個々のパイプライン段に関連するタイミングマージンを感知し、感知されたタイミングマージンに基づいてフィードバック信号を生成することを含む。] [0008] 図1を参照すると、例証的なデータ処理システムは、インタフェース(例えば外部バスインタフェース13およびバス9)を介して外部回路(例えば他の回路17、キャッシュメモリ回路20およびメモリ回路15)に接続可能な集積回路(例えば集積回路7)を備え得る。集積回路は、キャッシュメモリ回路(例えばキャッシュメモリ回路18)を備えてもよいプロセッサ回路(例えばプロセッサ回路11)を備え得る。プロセッサ回路11は、マイクロプロセッサ、マイクロコントローラ、デジタル信号プロセッサ、または他の適切な情報処理回路であってよい。さらに、データ処理システム10の少なくとも1つの実施形態では、集積回路7は、(例えばバス8を介して)プロセッサ回路に接続された他の回路(例えばキャッシュメモリ回路19、メモリ回路14,メモリ管理ユニット12および他の回路16)を備える。集積回路7内に示されたコンポーネントの種類、数または配置は単なる例であり、当業者には、本発明と一致するシステムおよび/または集積回路の実施形態が、より一般的に、他のコンポーネントの種類、数、および配置を備えてもよいことが理解されるだろう。] 図1 [0009] 一般に、メモリ14,15、18,19および20は、任意の種類の情報(例えばアドレス、データ、タグまたは他の適切な情報)を格納してもよく、かかる情報においてまたはかかる情報に関連して、パイプライン型アレイアクセスが記憶階層中の何らかのレベルで行なわれる。同様に、キャッシュ19および/または同様の設計の他のコンポーネントがメモリ管理ユニットの一部として現われてもよい。図1はメモリ14およびキャッシュ19を別々に示しているが、本発明と一致する他の実施態様は一方を含むが他方を含まなくてもよく、または2レベル以上の記憶階層を1つの要素またはブロックへ組み合わせてもよい。] 図1 [0010] コンポーネントは例証的な集積回路7として具現化されているが、別の実施形態では、1または複数のコンポーネントが別々の複数の集積回路で実装されてもよい。図の集積回路7の内部コンポーネントは相互に連結し、任意の適切な技術を使用して共同作業する。簡単にするため、主な機能的ブロックの相互接続がバス8で示されているが、任意の様々な相互接続技術およびトポロジーが本発明から逸脱せずに使用されてもよいことが当業者には理解される。] [0011] 本明細書で説明する技術は、データ処理システム10の1つまたは複数のメモリ回路または他の適切なメモリ回路で具現化可能である。技術をキャッシュメモリ回路の例に関して説明するが、任意の様々なメモリ回路を使用してもよいことが当業者には理解される。図2を参照すると、例証的なキャッシュメモリ回路200は、デコード論理およびラッチ回路220,ワード線ドライバ230,ビットセルアレイ240,カラム論理およびラッチ242,および制御論理回路222を備えている。キャッシュメモリ回路200は、適切な境界で複数の段にメモリアクセスを分割する例証的なパイプライン型メモリ回路である。個々のパイプライン段は制御論理回路222によって制御され、制御論理回路222は、制御クロック信号、読み取りイネーブル信号および指標値(インデックス)に応じて制御信号を生成する。例えば、キャッシュメモリ回路200は2つのパイプライン段へ分割されてもよい。第1のパイプライン段は、デコード論理段(例えばデコード論理およびラッチ回路220)、ワード線ドライバ(例えばワード線ドライバ230)およびメモリアレイ(例えばビットセルアレイ240)を備えてもよい。デコード論理段は、少なくとも部分的にアドレス(例えばインデックス)をデコードし、結果を格納する。デコード論理およびラッチ回路の220の出力は、ワード線ドライバ230およびビットセルアレイ240に提供され、ビットアレイセル240は例えばカラム論理およびラッチ回路242を含む第2のパイプライン段にメモリ内容を提供する。特定のカラム出力が選択され、1つのクロックサイクルと2つのクロックサイクルの待ち時間当たり1つの新しいデータ値のスループットで、Doutに対して新しいデータが提供されてもよい。] 図2 [0012] 少なくとも1つの動作点について、キャッシュメモリ回路部分200は、目標性能(つまり制御クロック信号の目標振動数、例えば2GHz)で動作する制御クロック信号の全サイクルを利用して、メモリアクセスの対応する部分を実行するパイプライン段へ分割される。しかしながら、キャッシュメモリ回路部分200は、異なる動作点(例えば目標性能動作点より低い電源電圧および/または低い制御クロック信号周波数を備えた動作点)に対して構成されてもよい。従って、キャッシュメモリ回路部分200の電源電圧レベルおよび/または制御クロック信号の周波数が下がり、それによりキャッシュメモリ回路部分200の待ち時間が増加する。一貫した電源電圧レベルを備えた制御クロック信号の周波数の減少または制御クロック信号の周波数および電源電圧レベルの両方の減少の結果、個々のパイプライン段のタイミングマージンが増加する。] [0013] より低い動作点で動作する完全パイプライン型モードの場合、キャッシュメモリ回路部分200における個々のパイプライン段によって制御クロック信号の全期間は利用されないため、図3のキャッシュメモリ回路部分300は調整可能なパイプラインを備えている。ある条件下では、パイプラインはキャッシュメモリ回路部分300のより少数の段(つまり1つまたは複数のフラッシュスルーモード)で動作するように構成され、それにより同じ動作点における完全パイプライン型動作と比較して、キャッシュメモリ回路部分300の待ち時間が短縮される。したがって、キャッシュメモリ回路部分300は、目標動作点におけるよりも低い電源電圧レベルおよび/または低い制御クロック信号周波数を有する動作点で余分のタイミングマージンを利用するように動的に構成され得る。例えば、キャッシュメモリ回路部分300がピーク性能(例えばfPEAK、VPEAK)に対して構成される場合、フラッシュスルーモードはすべて無効になる。しかしながら、キャッシュメモリ回路部分300が低電力モード(例えばfPEAK/2,VDD2)で動作するように構成される場合、完全パイプライン型モードにおけるよりも少なくとも1つの少ない数のパイプライン段を使用した第1のフラッシュスルーモードが有効になり得る。キャッシュメモリ回路部分300がさらに低い電力/性能モード(例えばfPEAK/4,VDD3)でも動作するように構成される場合、さらに少ない数のパイプライン段を使用した対応フラッシュスルーモードが有効になり得る。キャッシュメモリ回路部分300の少なくとも1つの実施形態では、制御論理322は、測定された電源電圧レベルのインジケータ(例えばDVFSCONTROL)および/または集積回路7の少なくとも一部の測定された動作周波数に基づいて低電力モードで動作するようキャッシュメモリ回路部分300を構成し、かかる測定値は任意の適切な技術によって生成されてよい。キャッシュメモリ回路部分300少なくともの1つの実施形態では、DVFS CONTROL信号は制御ユニット(例えば以下に説明する図9の制御システム900)により生成される。制御ユニットは、キャッシュメモリ回路300の少なくとも一部によって受け取られた電源電圧レベルおよび/またはキャッシュメモリ回路部分300における動作のタイミングを制御するために使用される制御クロック信号の周波数を調整する。] 図3 図9 [0014] コンポーネントを、図1のデータ処理システム10の少なくとも1つの実施形態における、例証的なキャッシュメモリ回路部分300として具現化されるものとして説明しているが、1または複数のコンポーネントが対応するメモリ回路部分の外部で実装され、他の回路と共有される。例えば、制御論理回路322の機能の少なくとも一部が集積回路7の他の部分により、またはデータ処理システム10の他の部分により実装可能であることが当業者には理解される。] 図1 [0015] 図3に参照すると、例証的なキャッシュメモリ回路部分300は、図4のメモリ回路部分400に示すような例証的な動作の分割を有する調整可能なパイプラインを備えている。キャッシュメモリ回路300のデコード論理およびラッチ320、ワード線ドライバ330、およびビットセルアレイ340の動作が第1のパイプライン段(例えば図4のパイプライン段401)に組み合わされ、図3のカラム論理およびラッチ342および追加論理回路の動作が第2のパイプライン段(例えば図4のパイプライン段403)に組み合わせられる。] 図3 図4 [0016] 図4および5を参照すると、パイプライン段401は、インデックスまたはメモリアドレスの複号機能を行ない、出力(例えばワード線選択、カラム選択およびセクタ選択)を生成する、フロントエンド回路404を備えている。完全パイプライン型動作中、フロントエンド回路404の出力は制御クロック信号の高い位相(例えばCLKのC2位相)の間変化(例えば遷移502)し、ラッチ406によりラッチされ、これが制御クロック信号の低い位相(例えばCLKのCl位相)の間、データをバックエンド回路408へと通過させる。メモリ回路部分400の少なくとも1つの実施形態では、フロントエンド回路404は行デコーダ、列デコーダ、マルチプレクサ回路および/または他の適切な回路を備えている。] 図4 [0017] パイプライン段401は、ワード線をアサートしメモリアレイ回路のビットラインを感知およびアクセスすることによりメモリアレイにアクセスする、バックエンド回路408を備えている。メモリ回路部分400の少なくとも1つの実施形態では、バックエンド回路408は、センス増幅器、メモリセル、マルチプレクサ回路および/または他の適切な回路を備えている。メモリ回路部分400の少なくとも1つの実施形態では、バックエンド回路408が動的論理回路(例えば制御クロック信号の第1相中に特定の電圧準位に予め充電され、制御クロック信号の別の位相中に条件付きで放出される出力ノードを含む論理構造)を備えることに注意する。] [0018] 例えば、メモリ回路部分400の少なくとも1つの実施形態では、バックエンド回路408がメモリセルからのデータにアクセスし、それをデータ出力信号に提供する(例えば、ワード線を選択し、ビットライン上で対応する信号を発達させる)。バックエンド回路408中のアレイに接続されたビットラインは、制御クロック信号の高位相中に予め充電される(例えば遷移512)。ワード線は、制御の低位相中に信号遷移を選択し(例えばWLの遷移504)、制御クロック信号の低位相中にビットライン上で信号が開発される(例えば遷移516)。センス増幅器中のノードは、制御クロック信号の低位相の第1部分の間の例えばSAEQが高い間に、零入力値に設定され(例えば遷移514)、ちょうどワード線セレクト信号が高く活性化される(例えばSAEQの遷移518)前にリセットされる。ビットライン上のデータは、SAENが高いとき(例えば遷移506)に感知され、バックエンド回路408の出力(例えばSA OUTSL2)がラッチ410により次の回路に渡される。その後、メモリアレイのセンス増幅器出力のラッチバージョン(例えばSA OUT SL2)が、パイプライン段403へ提供される。完全パイプライン型動作中、制御クロック信号の第1段中のフロントエンドの回路404の動作と、制御クロック信号の第2段中のバックエンド408の動作により、制御クロック信号の完全な1サイクルで、パイプライン段401のワード線およびカラムデコードおよびメモリアレイが実行される。] [0019] 本発明の少なくとも1つの実施形態では、パイプライン段403は、SA OUTSL2信号から適切な信号を選択する選択回路412を備えている(例えば方法選択、セクタ選択、データ再整列または他の適切な動作)。完全パイプライン型動作中に、選択回路412の出力はフリップフロップ414で格納され、制御クロック信号の立下がりエッジ(例えば遷移508)後に、新しいデータがメモリ回路部分400により提供される。本発明の少なくとも1つの実施形態では、パイプライン段403は、データ処理論理回路420も備えており、データ処理論理回路420はSA OUT SL2信号に含まれる適切な信号の論理処理(例えばエラー訂正コード動作)および/または他の適切な処理を行なう。完全型パイプライン型動作中、データ処理論理420の出力は制御クロック信号の特定の位相中にラッチされる。従って、完全パイプライン型動作中、パイプライン段403のデータ選択および処理動作は、制御クロック信号の少なくとも1つの半サイクルに実行する。] [0020] メモリ回路部400の1または複数の個々の回路部は、フィードバック信号、例えばflush_okl、flush_ok2,flush_ok3、flush_ok4を生成し、これらは回路部が余分のタイミングマージンを有しているかどうか示し、かつ/または、対応する回路部のタイミングマージンの量を示す。図6を参照すると、バックエンド回路408に備えられ得る例証的な回路部は、flush ok信号であってもよい信号を生成する。回路600は、メモリアレイに含まれるビットセル602を示す。ビットセル602の内容を反映するために、ビットラインBLおよびXBLは予め充電され、読込アクセスの間に放電される。センス増幅器606は、SAEN信号によるBLおよびXBLの評価に基づいてデータ信号を生成する。プログラマブル遅延回路610は、センス増幅器606に類似の別のセンス増幅器(例えばセンス増幅器608)へのSA EN信号を遅延させることにより、読込動作のマージンを決定するために使用される。センス増幅器608の出力を適切に評価する場合、適切な技術を使用してプログラマブル遅延の大きさに基づいて定量可能なタイミングマージンが存在する。] 図6 [0021] 図7を参照すると、バックエンド回路408に備えられ得るフィードバック信号生成回路の別の実施形態は、NANDゲート感知回路708を備えている。ビットセル702とセンス増幅器706は、回路710により制御される。NANDゲート感知回路708は、VDD(k*VDD)の分数である所定のトリガー点を有する。タイミングマージンが存在すれば、NANDゲート感知回路は適切にビットセル704の出力を評価するだろう。タイミングマージンは、任意の適切な技術を使用して、NANDゲート感知回路708のトリガー点に基づいて定量化され得る。] 図7 [0022] 戻って図4に参照すると、メモリ回路部分400はフロントエンド回路404、バックエンド回路408、選択回路412およびデータ処理論理回路420の各々に対する1つのフィードバック信号を備えているが、メモリ回路部分400の少なくとも1つの実施形態では、フィードバック信号は個々の回路部のうちのただ一つまたは複数により生成されてもよい。例えば、本質的にバランスのとれたパイプラインの任意の1つのパイプライン段が、タイミングマージンが存在するか否か示すかまたはパイプライン段のタイミングマージンの量を示す、フィードバック信号を生成してもよい。代わりに、最悪の場合のパイプライン段だけが、フィードバック信号を生成してもよい。メモリ回路部分400の少なくとも1つの実施形態では、フィードバック信号は、メモリ回路部分400に接続された制御回路(例えば図3の制御論理回路322)により、動作モードを選択するために使用されてもよい。選択された動作モードは、完全パイプライン型動作モードであってもよいし、またはフラッシュスルー動作モード(つまり減少数のパイプライン段を使用してパイプラインが実行する動作モード)であってもよい。特定のメモリ回路は、別のパイプライン段(つまりフラッシュ段)へ合体されるパイプライン段の数だけ異なる複数のフラッシュスルーモードを有してもよい。例えば、完全パイプライン型動作で4段階のパイプラインを有するメモリ回路は、3つのパイプライン段、2つのパイプライン段または1つの段(つまりメモリ回路自体の中にはパイプラインがないが、メモリ回路の境界に複数の状態要素を含む)を有するメモリ回路の個々の構成に相当するフラッシュスルーモードでも別々に動作してもよい。] 図3 図4 [0023] フラッシュスルーの動作モードでは、パイプラインの1つまたは複数の状態要素はトランスペアレントに構成される。例えば、状態要素は、状態要素を備えたパスから、または状態要素をバイパスする別のパスから選択するために、マルチプレクサを使用して完全にバイパスされてもよい。代わりに、フラッシュスルーモードでは、状態要素は入力信号を直接通って制御クロック信号と非同期に出力ノードへと入力信号を送るように構成されてもよい。メモリ回路部分400の少なくとも1つの実施形態では、状態要素をバイパスするのではなく、制御クロック信号はフラッシュモードを示す制御信号で論理上ORにされる。例えば、ラッチ406およびラッチ410を制御するためにはflushlが使用される。flushlが低い場合、ラッチ406および410は、クロック制御信号に関して同期してそれぞれの入力信号を対応する出力ノードへ渡すように構成される。flushlが高い場合、ラッチ406および410は、クロック制御信号に関して非同期にそれぞれの入力信号を対応する出力ノードへ渡すように構成される。結果として、パイプライン段401および403は、完全パイプライン型構成と比較して待ち時間が短縮された、かかるパイプライン段に対応する動作を実行する一つのパイプライン段へと組み合わされる。] [0024] 図4および8を参照すると、メモリ回路400が、第1のクロック周波数閾値(例えばfPEAK/2)に相当する第1のフラッシュスルー動作モード(例えばflush1=「1」かつflush2=「0」)に構成されている場合、フロントエンド回路404の出力は制御クロック信号の高い位相中に変化し、かつラッチ406を通ってバックエンド回路408に渡される。バックエンド回路408中のアレイに接続されたビットラインは、制御クロック信号の高位相(例えば遷移810)中に予め充電される。制御クロック信号の低位相中、ワード線選択信号が遷移(例えば遷移802)し、制御クロック信号の低位相中にかかる信号がビットライン上で発達する。バックエンド回路408の少なくとも1つの実施形態では、センス増幅器はフラッシュスルー動作モードで有効となる。従って、SAENが高い(例えば破線のSAEN波形で遷移808)場合にビットライン上のデータが感知され、バックエンド回路408の出力がラッチ410(例えばSA OUTSL2)を通ってパイプライン段403へ渡される。] 図4 [0025] バックエンド回路408の1つの少なくとも実施形態では、SAEN信号は、フラッシュスルー動作モードで無効となり、これにより選択ビット線が無効にされたセンス増幅器を通過し、ラッチ410(例えば遷移818)を通じてパイプライン段403へSA OUTおよびSA OUT SL2が生成される。アレイ出力の特定の部分は選択回路412により選択され、データ処理論理回路420に提供される。その後、データ処理論理回路420の結果が、制御クロック信号の低位相中(例えば遷移822)にOUT2に渡される。制御クロック信号の低位相中に新しいデータがメモリ回路部分400により提供され、制御クロック信号の立ち上がりエッジ(例えば遷移822および832により定義)の後で有効となる。データは、完全型パイプライン型構成と比較して、待ち時間が改善された(例えばセンス増幅器が有効の場合、クロックサイクルの2分の1以下だけ改善され、センス増幅器が無効になる場合、クロックサイクルの2分の1よりも大きくだけ改善される)出力で提供されることに注意する。] [0026] 図4を参照すると、メモリ回路部分400の少なくとも1つの実施形態では、クロック周波数の減少に伴いパイプラインの待ち時間が増加するため、パイプライン段の数は、第2のクロック周波数閾値(例えばfPEAK/4)に相当する1つまたは複数の追加の制御信号(例えばflush2)を使用して、一つのパイプライン段へ組み合わせることによりさらに減少され得る。例えば、制御クロック信号周波数が第2のクロック周波数閾値未満に低下した場合、flush2はアサートされ、それによりラッチ422がトランスペアレントに構成される。従って、DOUT2Aは、本質的に遅延無く、クロック制御信号と非同期に、OUT2に移行する。結果として、フロントエンド回路404,バックエンド回路408、選択回路412、およびデータ処理論理回路420は、制御クロック信号の多くて1つのサイクルの待ち時間を有する一つのパイプライン段を形成する。図4のメモリ回路の分割が例証的であることに留意する。パイプライン型メモリ回路の別の実施形態が他の適切な回路境界で分割されてもよいことが、当業者には理解される。] 図4 [0027] 図9を参照すると、例証的な集積回路プロセッサ(例えば図1のプロセッサ11)は、制御システム900の少なくとも一部分を備えている。制御システム900の少なくとも1つの実施形態では、制御装置902は、完全パイプライン型動作またはフラッシュスルー動作のためのキャッシュメモリ回路908を構成するために入力(例えば集積回路7に接続されたヒューズまたは図1の集積回路7の入力ピン上の信号の状態)を検知する。少なくとも1つの実施形態では、制御装置902は、制御レジスタ904の内容に従い電源電圧レベルおよび/またはプロセッサ11のクロック信号周波数を動的に測定する。制御レジスタ904はハードウェアまたはソフトウェアの少なくとも一方により設定されてよい。例えば、集積回路プロセッサ上で実行するソフトウェアは、図1のプロセッサ11上で実行する命令に基づく制御レジスタ904を構成してもよい。それらの命令は、命令の種類(例えばL2 nap、deep nap、snoops、またはスレッドがすべて使用されていない場合)により、または命令中の追加の事前複号により、低電力モードの集積回路プロセッサを構成する。少なくとも1つの実施形態では、集積回路プロセッサは、パイプライン動作モードの表と、メモリ回路の制御クロック信号の1つまたは複数の周波数と電源電圧の1つまたは複数のレベルとに対応する値と、に基づいてパイプラインの動作モードを選択する。集積回路プロセッサは、対応する動作モードを決定すべくメモリ回路の1つまたは複数の目標待ち時間と、目標電力消費とを用いて表(例えば制御レジスタ904または他の適切な記憶回路に格納された表)にアクセスし、制御レジスタ906を構成する。] 図1 図9 [0028] 少なくとも1実施形態では、集積回路プロセッサが、低周波数および/または低電力モードを開始するためにパッドまたはピンから受け取った1または複数の入力に基づいて制御レジスタ904を書き込む。図9を戻って参照すると、制御装置902は、制御レジスタ904の内容に基づいて各メモリ回路に対するローカルメモリ制御信号(例えば制御クロック信号周波数および電源電圧レベル)を構成する。それらの値はメモリアクセス周波数および電圧制御レジスタ906に格納されてよく、これらはキャッシュメモリ回路908を制御するために使用される。] 図9 [0029] 制御装置902は、キャッシュメモリ回路908が完全パイプライン型モードで動作するか、またはフラッシュスルーモードで動作するかを動的に選択するための、1または複数のフラッシュモード制御信号も生成する。図9および10を参照すると、少なくとも1実施形態では、制御装置902は、特定のメモリ回路の動作点を、1または複数の所定の閾値(例えば(fFREQ1,VDD1)(fFREQ2,VDD2),THRESHl、THRESH2,THRESH3、およびTHRESH4)と比較することにより、特定のフラッシュスルーモードを有効または無効にする。かかる所定の閾値はメモリ回路(メモリ制御レジスタ906または他の適切なメモリ回路)に格納される。閾値レベルは、シミュレーション、目標動作点、温度、他の環境要因、または他の適切なパラメータの1つまたは複数に基づいて決定され、かつ利用され得る。さらに、閾値レベルは、例えばパイプライン段の動作を保証し、かつ動作モード間の余分の切り替えを低減すべく、制御ループへヒステリシスを導入するように決定されてもよい。少なくとも1つの実施形態では、メモリ制御レジスタ906は、制御クロック信号の目標周波数と、電源電圧の目標レベルとを備えている。] 図9 [0030] 図10を参照すると、動作点の関数としての、完全パイプライン型動作、第1のフラッシュスルー動作モードおよび第2のフラッシュスルー動作モード中の例証的な性能(例えば待ち時間)および電力消費が例証される。曲線部分1002および1052は、完全パイプライン型動作で構成された(例えばn個のパイプライン段を有する)メモリ回路部分の性能と電力消費にそれぞれ相当する。曲線部分1004および1054は、第1のフラッシュスルー動作モードで構成された(例えばn−1個のパイプライン段を有する)メモリ回路部分の性能と電力消費にそれぞれ相当する。曲線部分1006および1056は、第2のフラッシュスルー動作モードで構成された(例えばn−2個のパイプライン段を有する)メモリ回路部分の性能と電力消費にそれぞれ相当する。モード間の遷移点は、シミュレーション、特定の動作点における目標電力消費と性能、温度、他の環境要因または他の適当なパラメータの1つまたは複数に基づいて決定可能である。] 図10 [0031] 図4を戻って参照すると、完全パイプライン型モードに構成された時、フリップフロップ402からフリップフロップ414の出力までのメモリアクセスは、制御クロック信号の2つのサイクルの待ち時間を有する(例えば、制御クロック信号周波数はfPEAKに等しい)。制御クロック周波数がfPEAKから周波数f(fFREQ2<f<fFREQ1(例えば、fPEAK/4<f<fPEAK/2))を有する動作点まで減少される場合、2つのパイプライン段の論理の合計伝播遅延が、制御クロックサイクルよりも小さくなる。合計遅延時間が制御クロックサイクルの所定の割合よりも小さい場合(例えば制御クロックサイクルの85%)、クロックをスケールダウンしたときに失われた性能の一部を、fFREQ1,VDD1における曲線部分1002から曲線部分1004の性能の不連続性により示されるように、フラッシュスルーモードに入ることにより回復することが可能である。同様に、制御クロックがfFREQ2より低い動作点にさらに減少される場合、VDD2(例えばfPEAK/4)ラッチ422はフラッシュスルーモードに設定され、第2のフラッシュスルーモードに入ってもよい。クロックがfFREQ2よりも低く減少された場合に失われた性能の一部を、VDD2で曲線部分1004から曲線部分1006までの性能の不連続性によって示されるように、少なくともクロックがfFREQ2以下に計られる時失われた性能の一部は、fFREQ2,VDD2における曲線部分1004から曲線部分1006の性能の不連続性により示されるように、第2のフラッシュスルーモードに入ることにより回復することが可能である。] 図4 [0032] 図9および11を参照すると、制御システム900の少なくとも1つの実施形態では、メモリ回路の動作方法の選択の際に、制御装置902はヒステレシスを導入する。つまり、電源電圧および/または制御クロック信号周波数の関数としてのモード選択は、電源電圧および/または制御クロック信号周波数の減少値と比較して、電源電圧および/または制御クロック信号周波数の増大値については異なる。電源電圧および/または制御クロック信号周波数の関数としてのモード選択は、電源電圧および/または制御クロック信号周波数に対する変更の大きさおよび方向に基づく。したがって、モード選択は、電源電圧および/または制御クロック信号周波数のみならず、電源電圧および/または制御クロック信号周波数の前回の値にも基づいて決まる。] 図9 [0033] 例えば、少なくとも1実施形態では、制御装置902は、次の動作点を1または複数の閾値(例えば図10の閾値)と比較し、それに基づき1または複数の対応するインジケータを生成する。その後、制御装置902は、1または複数のインジケータに基づいて、パイプライン型動作モードを少なくとも部分的に選択する。キャッシュメモリ回路908が完全にパイプライン型動作のために構成される場合(例えば、状態1102)、次の動作点が第1の閾値(例えばTHRESHl)より大きいと、キャッシュメモリ回路908は次の動作点(1110)で完全にパイプライン化されたモードで動作し続ける。同様に、キャッシュメモリ回路908が完全パイプライン型動作のために構成され、次の動作点が、第1の閾値と第2の閾値(例えば第2の閾値は第1の閾値の85%に設定することが可能である)の間にある場合、キャッシュメモリ回路908は次の動作点(1108)で完全パイプライン端動作モードで動作し続ける。しかしながら、キャッシュメモリ回路908が完全パイプライン型動作のために構成され、次の動作点が第2の閾値よりも低い場合、制御装置902は次の動作点(1114)でキャッシュメモリ回路908を第1のフラッシュスルーモード(例えば、状態1104)に構成する。制御装置の少なくとも1つの実施形態では、第2のフラッシュスルーモードをサポートするのに十分なタイミングマージンをメモリが有していることをフィードバック信号(例えば図4のflush_oklおよび/またはflush_ok2)が示さない限り、状態1102から状態1104への遷移はなされない。] 図10 図4 [0034] キャッシュメモリ回路908が第1のフラッシュスルーモードで動作している場合(例えば状態1104)、次の動作点が第1の閾値よりも大きいと、キャッシュメモリ回路908は次の動作点(1112)で完全パイプライン型モードで動作する。キャッシュメモリ回路908が第1のフラッシュスルーモードで動作している場合に、次の動作点が第4の閾値よりも大きいが第1の閾値よりも小さいと、キャッシュメモリ回路908は次の動作点(1116,1118,1120)で第1のフラッシュスルーモードで動作する。しかしながら、キャッシュメモリ回路908が第1のフラッシュスルーモードのために構成され、次の動作点が第4の閾値よりも小さい場合、キャッシュメモリ回路908は次の動作点(1126)で第2のフラッシュスルーモード(例えば状態1106)で動作する。制御装置の少なくとも1つの実施形態では、第2のフラッシュスルーモードをサポートするのに十分なタイミングマージンをメモリ回路が有していることをメモリフィードバック信号(図4の例えばflush_ok3および/またはflush_ok4)が示さない限り、状態1104から状態1106への遷移はなされない。] 図4 [0035] キャッシュメモリ回路908が第2のフラッシュスルーモード(例えば状態1106)で動作している場合に、次の動作点が第3の閾値より大きいと、キャッシュメモリ回路908は次の動作点(1124)で第1のフラッシュスルーモードで動作する。キャッシュメモリ回路908が第2のフラッシュモードで動作している場合に、次の動作点が第3の閾値未満であると、キャッシュメモリ回路908は次の動作点(1128,1130)で第2のフラッシュスルーモードで動作する。メモリ回路400のパイプライン段が対応する動作モードで適切に動作するだろうということを保証するために第1,第2,第3,第4の閾値を選択しければならないことに注意する。] [0036] 戻って図10に参照すると、完全パイプライン型動作の性能を有する動作点と比較していくつかの動作点の性能が改善されるのに加えて、キャッシュメモリ回路908の少なくとも1つの実施形態では、フラッシュスルー動作モードが電力消費の低減という利点を与える。省電力は、状態要素(例えば状態要素を計測しないフロースルーモードまたはバイパスモードで構成)の切り換えの減少により達成されてもよい。一般に、状態要素の電力消費は、パイプラインラッチが多数(例えば、通常1メガバイト、レベル2キャッシュでは10,000個のパイプラインラッチ)あるためメモリ回路において重要である。メモリ回路を動作させるフラッシュスルーモードは、低減された周波数制御クロック信号で動作する完全パイプライン型回路の電力消費から電力消費をさらに低減させてもよく、これは図10の曲線部分1052から曲線部分1054への、曲線部分1054から曲線部分1056への電力消費の不連続性により示されている通りである。] 図10 [0037] 図12を参照すると、本発明の少なくとも1つの実施形態では、調整可能なパイプラインメモリ回路部分(例えばキャッシュメモリ回路1208)に接続された論理回路(例えば論理ブロック1212)は、制御装置1210からメモリ回路の動作モードのインジケータを受け取る。制御装置1210は論理回路に制御信号を提供する。論理回路は、メモリ回路の可変の待ち時間に従って入力を受け取るべくメモリ回路を論理回路と同期させるために使用可能な論理制御信号を受け取る。論理回路も、かかる制御信号に基づいて適切な数のパイプライン段で構成されてもよい。] 図12 [0038] 回路と物理構造は一般的なものが想定されるが、現在の半導体設計および組立てでは、物理構造と回路が、後続の設計、試験または組立て段階に使用するのに適したコンピュータ可読の記述形式で具現化され得ることがよく理解されている。複数の構造および例証的な構成中の複数の個別部品として提示された機能が、組み合わされた構造またはコンポーネントとして実装されてもよい。本発明は、いずれも本明細書で説明し添付の特許請求の範囲に定義されるように、回路、回路のシステム、関連方法、およびかかる回路、システムならびに方法をコードするコンピュータ可読媒体を含むことが想定される。本明細書に使用する場合、コンピュータ可読媒体は少なくともディスク、テープまたは他の磁気媒体、光学媒体、半導体媒体(例えばフラッシュメモリカード、ROM)、または電子媒体を含む。] [0039] 本明細書に記載した本発明の説明は例示であって、以下の請求項に記載した本発明の範囲を限定することは意図しない。例えば、本発明は完全パイプライン型モードでメモリ回路部分400がパイプライン段401および403を備えた実施形態で説明されているが、当業者にはかかる教示を他の適切な境界により複数のパイプライン段へ分割されたメモリ回路部分に利用可能であることが理解されよう。本明細書に開示された実施形態のバリエーションおよび修正は、以下の請求項に記載した発明の範囲および趣旨から逸脱せずに、本明細書に記載した説明に基づいてなされ得る。]
权利要求:
請求項1 メモリ回路を動作させる方法であって、メモリ回路により生成されたフィードバック信号に少なくとも部分的に基づいて、メモリ回路の動作モードを選択すること、および前記メモリ回路の選択された動作モードに基づく数のパイプライン段を使用して、メモリ回路を動作させること、からなる方法。 請求項2 メモリ回路の個々の回路部に関連するタイミングマージンを感知し、該感知されたタイミングマージンに基づいてフィードバック信号を生成することをさらに含む請求項1に記載の方法。 請求項3 前記動作モードは、メモリ回路の制御クロック信号の周波数およびメモリ回路の電源電圧レベルのうちの少なくとも1つの値に対応する動作モード情報の表の少なくとも1つのエントリに部分的に基づいて選択される請求項1に記載の方法。 請求項4 前記動作モード情報は、メモリ回路の目標待ち時間と、制御クロック信号の周波数および電源電圧のレベルに対応するメモリ回路の目標電力消費とから成るグループの少なくとも1つに基づいて決定される請求項3に記載の方法。 請求項5 動作モードは、動作モードの変更の大きさおよび向きに部分的に基づいて選択される請求項1に記載の方法。 請求項6 動作モードは、メモリ回路に接続され1または複数の命令処理ユニットにより少なくとも部分的に実行される命令に基づいて決定される請求項1に記載の方法。 請求項7 動作モードは、メモリ回路を備えた集積回路の少なくともピンから受け取った構成情報に基づいて選択される請求項1に記載の方法。 請求項8 動作点を少なくとも1つの閾値と比較し、該比較に基づいてインジケータを生成することをさらに含み、動作モードはインジケータに基づいて選択される請求項1に記載の方法。 請求項9 パイプライン段の数を使用してメモリ回路を動作させることは、パイプライン段の数が第1の数である場合に、制御クロック信号に関して同期して第2の回路部に第1の回路部の結果を提供すること、およびパイプライン段の数が第2の数である場合に、制御クロック信号に関して非同期に第2の回路部に第1の回路部の結果を提供することからなる請求項1に記載の方法。 請求項10 パイプライン段の数を使用してメモリ回路を動作させることは、パイプライン段の数に少なくとも部分的に基づいて、少なくとも1つの状態要素をトランスペアレントであるように選択的に構成することを含む請求項1に記載の方法。 請求項11 少なくとも1つの状態要素はラッチ回路を含む請求項10に記載の方法。 請求項12 集積回路であって、メモリ回路と、メモリ回路によって生成されたフィードバック信号に少なくとも部分的に基づいて、メモリ回路の動作モードを選択するように構成された制御回路とを備え、メモリ回路は、前記メモリ回路の選択された動作モードに基づく数のパイプライン段を使用して動作するように構成される、集積回路。 請求項13 フィードバック信号は、メモリ回路の個々の回路部に関連したタイミングマージンを示す請求項12に記載の集積回路。 請求項14 制御回路に接続され、メモリ回路の制御クロック信号の周波数およびメモリ回路の電源電圧のレベルから成るグループの少なくとも1つの値に対応する動作モード情報を格納するように構成された第2のメモリ回路をさらに備え、制御回路は、制御クロック信号の特定の周波数および電源電圧の特定のレベルに対応する第2のメモリ回路の内容に部分的に基づいて動作モードを選択するように構成される、請求項12に記載の集積回路 請求項15 第2のメモリ回路の内容は、メモリ回路の目標待ち時間、および制御クロック信号の特定の周波数および電源電圧の特定のレベルに対応するメモリ回路の目標電力消費から成るグループの少なくとも1つに基づく、請求項14に記載の集積回路。 請求項16 制御回路は、集積回路上で実行するプログラム命令の少なくとも部分的な実行に少なくとも部分的に基づいて、動作モードを選択するように構成された少なくとも1つの命令処理ユニットを含む、請求項12に記載の集積回路。 請求項17 前記メモリ回路が、メモリクロック信号に同時のセンス増幅器イネーブル信号に応じてメモリアレイからの複数のビットの少なくとも1つを感知するように構成された第1のセンス増幅器回路、およびセンス増幅器イネーブル信号の遅延信号に応じてメモリアレイからの複数のビットの少なくとも1つからのビットを感知し、かつ第2のセンス増幅器の出力で生成された電圧値の差に基づいてフィードバック信号を生成するように構成された第2のセンス増幅器を備えた請求項12に記載の集積回路。 請求項18 メモリ回路は、第1の回路部と、第2の回路部と、第1の回路部と第2の回路部との間に接続され、第1の動作モードと第2の動作モードで設定可能な第3の回路部とを備え第1の動作モードでは、第3の回路部は第1の回路部の結果を受け取り、クロック信号に関して非同期にオペランドとして第1の回路部の結果を第2の回路部に提供し、それにより第1の回路部と第2の回路部を同じパイプライン段に構成し、第2の動作モードでは、第3の回路部は第1の回路部の結果をラッチし、クロック信号の遷移に関して同期にオペランドとして第1の回路部の結果を第2の回路部に提供し、それにより第1の回路部と第2の回路部を異なるパイプライン段に構成する、請求項12に記載の集積回路。 請求項19 第1の回路部はメモリワード線およびカラムデコード回路と、メモリデータ取得回路とを含み、第3の回路部はメモリ線選択回路を含む請求項18に記載の集積回路。 請求項20 第1の回路部、第2の回路部および第3の回路部の少なくとも1つは、動的論理回路を含む請求項18に記載の集積回路。 請求項21 装置であって、一定数のパイプライン段を使用して、複数の記憶素子のアレイの内容を提供する手段と、前記提供する手段により生成されたフィードバック信号に少なくとも部分的に基づいて、前記提供する手段の動作モードを選択する手段とを備え、前記パイプライン段の数は前記提供する手段の動作モードに基づいて決定され、前記フィードバック信号は、メモリ回路の各回路部に関連するタイミングマージンを示す、装置。
类似技术:
公开号 | 公开日 | 专利标题 US9214208B2|2015-12-15|NOR-OR Decoder US20200020381A1|2020-01-16|Double data rate | memory controller apparatus and method US7167401B2|2007-01-23|Low power chip select | latency option US6822478B2|2004-11-23|Data-driven clock gating for a sequential data-capture device US7542356B2|2009-06-02|Semiconductor memory device and method for reducing cell activation during write operations US7606089B2|2009-10-20|Data strobe signal generator for generating data strobe signal based on adjustable preamble value and semiconductor memory device with the same JP5160770B2|2013-03-13|レイテンシー制御回路及びその方法、そして、自動プリチャージ制御回路及びその方法 KR101471251B1|2014-12-09|동적 데이터 스트로브 검출 US8644096B2|2014-02-04|Command paths, apparatuses, memories, and methods for providing internal commands to a data path US8862973B2|2014-10-14|Method and system for error management in a memory device US8275560B2|2012-09-25|Power measurement techniques of a system-on-chip | US6812799B2|2004-11-02|Synchronous mirror delay | circuit and method including a ring oscillator for timing coarse and fine delay intervals US9037812B2|2015-05-19|Method, apparatus and system for memory validation US7773435B2|2010-08-10|Semiconductor memory devices for controlling latency US6262938B1|2001-07-17|Synchronous DRAM having posted CAS latency and method for controlling CAS latency US8040751B2|2011-10-18|Semiconductor memory device Buyuktosunoglu et al.2001|A circuit level implementation of an adaptive issue queue for power-aware microprocessors US8984320B2|2015-03-17|Command paths, apparatuses and methods for providing a command to a data block US7016245B2|2006-03-21|Tracking circuit enabling quick/accurate retrieval of data stored in a memory array US7721129B2|2010-05-18|Method and apparatus for reducing clock frequency during low workload periods JP5013394B2|2012-08-29|半導体集積回路装置 Buyuktosunoglu et al.2000|An adaptive issue queue for reduced power at high performance KR100954730B1|2010-04-23|에러 완화를 위한 장치, 방법 및 시스템 US20060067144A1|2006-03-30|Memory array with precharge control circuit EP0726576A2|1996-08-14|Method and apparatus for pipelining data in an integrated circuit
同族专利:
公开号 | 公开日 US7800974B2|2010-09-21| US20090213668A1|2009-08-27| CN101946237B|2012-12-12| CN101946237A|2011-01-12| JP5522690B2|2014-06-18| WO2009105295A1|2009-08-27|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2012-01-17| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20120116 | 2012-01-17| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120116 | 2012-02-28| RD04| Notification of resignation of power of attorney|Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120227 | 2013-07-22| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130722 | 2013-07-31| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130730 | 2013-10-26| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131025 | 2014-03-05| TRDD| Decision of grant or rejection written| 2014-03-12| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140311 | 2014-04-10| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140402 | 2014-04-18| R150| Certificate of patent or registration of utility model|Ref document number: 5522690 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 | 2017-04-04| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2017-11-01| S533| Written request for registration of change of name|Free format text: JAPANESE INTERMEDIATE CODE: R313533 | 2017-11-10| R350| Written notification of registration of transfer|Free format text: JAPANESE INTERMEDIATE CODE: R350 | 2018-04-10| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2019-04-09| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 | 2020-03-30| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|